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Abstract

Accident management is an important component to maintaining risk at acceptable levels for
all complex systems, such as nuclear power plants. With the introduction of passive, or in-
herently safe, reactor designs the focus has shifted from management by operators to allowing
the system’s design to take advantage of natural phenomena to manage the accident. Inher-
ently and passively safe designs are laudable, but nonetheless extreme boundary conditions
can interfere with the design attributes which facilitate inherent safety, thus resulting in unan-
ticipated and undesirable end states. This report examines an inherently safe and small sodium
fast reactor experiencing a variety of beyond design basis events with the intent of exploring
the utility of a Dynamic Bayesian Network to infer the state of the reactor to inform the opera-
tor’s corrective actions. These inferences also serve to identify the instruments most critical to
informing an operator’s actions as candidates for hardening against radiation and other extreme
environmental conditions that may exist in an accident. This reduction in uncertainty serves to
inform ongoing discussions of how small sodium reactors would be licensed and may serve to
reduce regulatory risk and cost for such reactors.
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Executive Summary

Severe accidents are extremely rare in the nuclear power industry. However, as demonstrated by
the Fukushima accident, rare events are not impossible events, and responding to these accidents
can be extremely difficult. Severe Accident Management Guidelines (SAMGs) serve as a critical
resource that would help operating crews respond to severe accidents. Sandia is investigating
whether dynamic PRA could improve SAMGs and thus human reliability.

Dynamic, simulation-based Probabilistic Risk Assessment (PRA) methods can provide a scientific
basis for supporting the diagnosis and response planning for current and future reactor designs.
Recent advances in computing enable simulation-based PRA approaches to explore thousands of
accident scenarios. Coupling these scenarios with plant simulations allows prediction of plant pa-
rameters and consequences associated with each accident scenario. In effect, running thousands
of advanced PRA simulations allows experts to explicitly map out the relationship between known
accident scenarios and observable reactor parameters. Dynamic PRA offers a comprehensive un-
derstanding of the accident scenarios and the associated plant states.

The methodology proposed in [1, 2] would allow the results of dynamic PRA to be harnessed to
provide comprehensive, science-based support to operators facing severe accidents that fall be-
yond the scope of existing procedures, training, and experience. By formally encoding advanced
PRA knowledge in SMART (Safely Managing Accidental Reactor Transients) SAMGs, we could
reduce the socio-technical challenges associated with responding to severe accidents, and provide
an additional line of defense against events which have traditionally been related to beyond design
basis accidents or residual risk.

This report describes a severe accident management tool and demonstration for a small sodium
reactor subjected to transient overpowers resulting from 0.3g and 0.5g earthquakes, transient over-
power due to control rod removal, loss of primary coolant flow, and loss of operating and shutdown
heat removal. SNL’s PRA research under DOE’s Advanced Reactor Technology program had three
goals. A primary goal was to analyze a spectrum of accidents and explore the impact both of initial
uncertainties and of human intervention, in order to provide operational insights to reduce potential
for reactor damage. That goal was advanced and documented in ”Advance Liquid Metal Reactor
Discrete Dynamic Event Tree/Bayesian Network Analysis and Incident Management Guidelines
(Risk Management for Sodium Fast Reactors)” [3]. Another goal was to use the insights from
the accident analyses to create a Dynamic Bayesian Network (DBN) which can learn from the
instrumented variables with the objective of inferring key states of the reactor. This objective was
also advanced in Reference [3]. A third goal was to use the DBN to provide example inferences
throughout the accident progression tree. This goal was accomplished and documented in this
report.
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Key Results

The key results documented in this report include:

• Thousands of SAS4A simulations can be structured in a series of tractable dynamic event
trees that explore uncertainties in reactivity coefficients, electromagnetic pump performance,
reactor protection system performance, and operator modifications of the direct reactor aux-
iliary heat removal system and primary and secondary loop electromagnetic pump operation.

• Temporal information, including indicators that may be available to the operators such as
temperatures, can be extracted from SAS4A, transformed into a reduce order data set that
is compatible with a DBN, and combined with component end states from the simulation to
train a DBN.

• Key observations, number less than 10 separate observations, can be applied to the trained
DBN to diagnose some accidents that do not involve failure of the reactor protection system.

• Diagnosis of accidents that involve failure of the reactor protections system will require an
automated process for feeding in accident parameters to the trained DBN due to the large
amount of evidence needed to overcome the low probability of reactor protections system
failure.

Once the DBN can be utilized across the accident space, the initial SAS4A simulations can be
integrated to inform optimal accident management procedures.

12



Nomenclature

ADAPT Analysis of Dynamic Accident Progression Trees

ALADDIN Automatic Loader of Accident Data for a Dynamic Inferencing Network

BOP Balance of Plant

DBN Dynamic Bayesian Network

COL Combined License
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DDET Discrete Dynamic Event Tree

DHRS Decay Heat Removal System

DRACS Direct Reactor Auxiliary Cooling System

EMP Electro-Magnetic Pump

EPRI Electric Power Research Institute

IHTS Intermediate Heat Transport System

KL Kullback-Leibler

LOF Loss of Flow

LOHR Loss of Operating Heat Removal

LWR Light Water Reactor

NRC United States Nuclear Regulatory Commission

PRA Probabilistic Risk Assessment

PSID Preliminary Safety Information Document

RCS Reactor Coolant System
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SMR Small Modular Reactor

TOP Transient Overpower

ULOF Unprotected Loss of Flow

UTOP Unprotected Transient Overpower
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1 Introduction

1.1 Challenge/Problem Description

In this manuscript, we develop a proof-of-concept Dynamic Bayesian Network accident manage-
ment model for a sodium fast reactor (SFR) which could be used to assist nuclear reactor operators
to infer the state of the reactor with a subset of information that would be available during the
accident as illustrated in [1]. We then use the model to investigate whether such a model is capable
of providing insight into which reactor parameters provide the most valuable information for diag-
nosis. In the near term, the results could be used to determine which reactor parameters should be
instrumented in the control room. In the longer term, the results would be a first step toward a full
SMART procedures system.

1.1.1 Relevance to Industry

Generally, SFRs have several technological advantages that can affect the operation and safety of
the plant. Two examples are passive safety features and low reactor pressure. Passive safety fea-
tures utilize gravity-driven or natural convection systems rather than active, pump-driven systems
to supply heat removal during upset conditions. An example of this is the sodium pool. The com-
bination of large thermal mass and high conductivity helps to cool the reactor if pumps are not
operational. The relatively low reactor vessel pressure (when compared to traditional LWRs) can
reduce the cost of the vessel itself and simplify the overall system. On the other hand, SFRs also
have unique technological challenges, which include positive coolant void and coolant tempera-
ture coefficients. While the overall net reactivity does decrease with increased temperature, the
individual positive coefficients may pose a regulatory challenge. The fast-spectrum fuel is also not
in its most reactive configuration when operating, which can lead to recriticality concerns during a
severe accident.

SFR designs face regulatory challenges since regulations have been built up around the popular
LWR technology. Nuclear Regulatory Commission (NRC) regulations specify the operator, se-
curity, and emergency response requirements for licensed nuclear reactors. Many of the existing
regulations may not be applicable to SFR designs, especially considering the different coolant
material and fast neutron spectrum.

Though no power SFRs have been licensed by the NRC and built, there is significant sodium
reactor history in the USA. EBR-II [4] was operated for approximately 30 years, and was involved
in numerous successful safety and fuel breeding tests. Its operational history has led to it being
heavily influential in subsequent sodium reactor design. The Clinch River Breeder Reactor [5] was
proposed as a joint effort between the Atomic Energy Commission and industry, but funding was
canceled before construction began. The Fast Flux Test Facility (FFTF) [6] was run successfully
as a fuel and material testing reactor for approximately 13 years. Finally, significant ground work
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toward licensing of a modern sodium power reactor was laid by the PRISM reactor project [7]. The
severe accident management tool documented in this report would provide a critical component to
the demonstration of the technical safety basis for licensing of power SFRs and the potential for
reduced control room staffing for SFRs as compared to large LWRs.

1.2 Relationship with Collaborators

Figure 1 sketches the contributions of various actors in the overall Advanced Reactor Technologies
(ART) project. Argonne National Laboratory has contributed through SAS4A support and expert
elicitation for defining accidents to be considered. In return, Sandia has provided source code
modifications to SAS4A to enable creation of discrete dynamic event trees (DDETs). A DDET
differs from a traditional event tree in that events are given discrete timing. This allows DDETs
to better capture complex behavior, as different timing of events may change the response of the
system and thus branching of the event tree. Oak Ridge National Laboratory and Idaho National
Laboratory have contributed probabilistic multi-physics insights that further inform accident defi-
nition. In addition, Idaho has launched an online portal that, when completed, will host databases
to store the results of simulations and PRA documents to be used by all laboratories. Finally, the
University of New Mexico has provided computer science support to translate SAS4A output data
into populated Dynamic Bayesian Networks (DBNs).

1.3 Methodology

The theoretical framework for developing SMART procedures involves coupling dynamic PRA,
system simulations codes, and Dynamic Bayesian Networks (DBNs) to provide fast-running di-
agnostic support [2, 1]. The methodology, as shown in Figure 2, takes outputs from an advanced
PRA and aggregates them into a DBN to provide decision support. This coupled approach pro-
vides a process for extensive and comprehensive modeling of both the accident space and the plant
response, in a fast-running framework. The research team develops and executes a full spectrum of
runs using Discrete Dynamic Event Trees (DDETs) coupled to a simulation code (e.g., MELCOR,
SAS4A); these runs are designed to cover the possible state-space of the accident. DBNs are used
to synthesize and reduce this information into a framework that can be used for faster-than-real-
time decision support. This information is used in combination with PRA information, e.g. system
failure probabilities, to provide a detailed, probabilistic model of the accident sequence space.
The resulting DBN model is an extensive knowledge base covering a wide spectrum of possible
accidents, encoding the best-available knowledge from PRA to be used when needed.

The SMART procedures framework is implemented using a combination of tools. The DBN
models are generated in GeNIe [8], which is a development environment for graphical decision-
theoretic models developed by the University of Pittsburgh Decision Systems Laboratory. The
structure of the model is built by the analyst. The model is built as a plate-based model containing
nodes for accident states and reactor systems/components (outside of the temporal plate) and for
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Figure 1: Relationship with Collaborators.

plant parameters (inside the temporal plate). Arcs are developed based on known causal relation-
ship between the accident sequences, the reactor system components, and the plant parameters.
The accident nodes are modeled as target nodes in GeNIe. The number and size of the time steps
in the DBN are selected by the analyst.

The SAS4A [9] safety analysis code is used to simulate SFR accident characteristics. SAS4A is
a system-level code that is capable of simulating SFR thermal-hydraulics in the core and reactor
coolant system (RCS), neutronics, and liquid metal reactor accident phenomena. The reactor is
nodalized in SAS4A as shown in Figure 3 [10]. It is noted in Reference [3] that SAS4A was
incompatible with the DDET code ADAPT. While the event trees being constructed are simple
enough that they are functionally identical to DDETs with similar branching rules, the eventual
use of DDETs will allow more flexibility in order and timing of events. The incompatibility was
resolved late in FY15 and test DDETs have been created and run with satisfactory results. It is
expected that the next set of studies will incorporate the use of ADAPT.
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Figure 2: Conceptual process to develop risk-informed SMART SAMG procedures for nu-
clear power plant diagnostic support.

The data from the SAS4A simulations are processed through a data processing system, which is
described in a draft SAND report titled ”ALADDIN: The Automatic Loader of Accident Data
for Dynamic Inferencing Networks” [11]. This process automates the quantification of the DBN
model by filling the conditional probability tables in GeNIe with conditional probabilities based
on external data. The system discretizes the SAS4A results and uses the discretized data to build
a conditional probability tree that records the conditional probabilities of each observed variable
given each combination of target states. The nodes are assigned a conditional probability at each
time step. These probabilities are conditioned on the state of the reactor component/system and
accident state variables.

1.4 Structure

This report is divided in the following way:

• Chapter 1: Outline of the motivation for the work and the DBN methodology

• Chapter 2: The particular reactor system and accidents to be evaluated

• Chapter 3: The accident simulation outputs in terms of the inputs that will be presented to
the DBN for diagnoses

• Chapter 4: The structure of the particular DBN
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III. ANALYSIS RESULTS 

A quasi-static reactivity balance analysis with the 
integral reactivity parameters (A, B, and C) of the AFR-
100 was performed in Reference 1. Table I summarizes 
these parameters for the AFR-100 and the conditions for 
the system to have favorable conditions at the end of 
unprotected accident scenarios. [3] Investigation of these 
parameters suggested that, with one noticeable exception, 
the most severe consequences of unprotected events would 
occur at either BOC or EOC conditions, which have 
similar integral reactivity parameters. The exception is due 
to the worth of the control rods, which reach a maximum at 
MOC conditions. Consequently, the TOP reactivity 
initiator is much more severe at MOC conditions (33 ¢) 
than at BOC (5 ¢) or EOC (9 ¢) conditions. Further 
discussion on these parameters, the conditions for 

favorable inherent safety features and their meanings is 
provided in References 1 and 3. 

It was decided to analyze the UTOP transient at MOC 
conditions while analysis of the other transients (ULOF 
and PLOF) is carried out at both BOC and EOC 
conditions. BOC and EOC transient results were similar so 
the BOC results are presented here in greater detail.   

For the loss of flow accidents described below, the 
pump inertia provides the driving force for coolant flow 
even when the power supply to the pumps is interrupted. 
Therefore, the flow rate reduces gradually in the initial 
stages of the transient. The rate of flow decrease is usually 
described by the flow halving time, i.e. the time it takes for 
the mass flow rate to be halved. This flow halving time is a 
function of the inertia of the pump. As the AFR-100 uses 
EM pumps, the pump inertia is provided by the inertia of 
the motor-generator sets that shape the voltage-driven flow 
coast down. The base design option case examined was a 
flow halving time of 10 seconds for both PLOF and ULOF 

Figure 3: SFR SAS4A Nodalization

• Chapter 5: Insights drawn from the DBN as an example of the methodology

• Chapter 6: Planned and future work in the area
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• Chapter 7: Summary of the types of insights that can be gained with the methodology and
the overall applicability of the particular case
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2 SFR Case Study Event Trees

This chapter describes the notional event trees of SAS4A simulations that will be used to train
the DBN reasoning model. The SAS4A model used in this analysis is functionally equivalent to
the model used in a previous report for this work [3]. The reactor model used in this study is
a generic, small modular metallic fueled SFR with features adopted from the Advanced Liquid
Metal Reactor (ALMR) design [12]. Some key design features which are relevant to modeling the
selected accident sequences are:

• Four Electro-Magnetic Pumps (EMPs)→ Provide forced circulation in the primary system to
cool the reactor core. These pumps may experience thermal damage above 500◦C operating
temperature.

• Direct Reactor Auxiliary Cooling System (DRACS)→ Passive decay heat removal system
(DHRS) which uses natural circulation to transfer heat to air.

• Inherent reactivity shutdown→ the reactor system exhibits strong negative reactivity feed-
back to increases in overall system temperature; thus the reactor can move from fission to
decay heat levels without control rod insertion.

2.1 Purpose of Notional Event Trees

The notional event trees described herein are intended only to provide the probabilistic backbone
for the DBN reasoning model. The generic small sodium reactor is a notional, pre-conceptual
design and as such many assumptions were made in the assessment of failure probabilities. When
required, probabilities were taken from the PRISM PSID [13], especially for initiating event annual
occurrence probabilities. The potential for some events, such as transient overpowers (TOP), are
highly design specific and thus the PRISM TOP magnitudes and initiating frequencies may not
intuitively translate to a smaller reactor core with a 30 year refueling lifetime.

Due to these issues, the overall risks calculated with the simplified event trees provided in this
report are not intended to accurately estimate the risk of a small sodium reactor. Instead, the
following notional event trees are only intended to provide a rough estimate of the shape of the
probability surface and associated reactor response in order to train and validate the DBN reasoning
model.

The prototype model is intended to focus on four fundamental accidents: seismic-induced tran-
sient overpower, non-seismic transient overpower (TOP), loss of flow (LOF), and loss of operating
heat removal (LOHR). Each accident sequence may be of the type ”protected” or ”unprotected”,
depending on whether SCRAM occurs. Each accident sequence has the potential for long-term
reduction in heat removal, such as degraded auxiliary cooling functionality or primary pump trip
or damage.
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For ease of visual representation and explanation, these major branches of the event tree have been
broken down into sub-trees. Between the four sub-trees, 7,188 total branches were created, run in
SAS4A, and the resulting data loaded into the DBN to be used for inferencing. See Chapter 3 for
a discussion of the SAS4A results and how they were processed by ALADDIN [11] for inclusion
into the DBN.

2.2 General Description of Branching Parameters

The notional event trees were created to provide the DBN with a wide array of accident sequences
over which to reason and can be divided into two major categories. The first set of event trees
depends on internal events. These event trees covers combinations of TOP, Loss of Flow (LOF),
and Loss of Operating Heat Removal (LOHR) accident sequences. The second set is referred to as
the earthquake event trees and is an expansion of the 0.5g earthquake event tree analyzed in [3].

The internal events event tree has the following branch conditions:

• TOP magnitudes

• LOF magnitudes

• BOP availability (LOHR)

• Scram state

• DRACS state

• Secondary (intermediate loop) pump power

• Inherent Reactivity Response

• Operator induced trip of the primary coolant pumps at 525K

• High temperature operating efficiency of the primary pumps

Reactor Protection System The RPS system is designed to bring the reactor to a safe configuration
upon achieving the following set points:

• Flux (power) rises above 119% of its nominal value

• Core inlet temperature drops below 400◦C

• Core outlet temperature rises above 570◦C

• Normalized power to flow ratio drops below 1.13
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When the RPS reaches any of the above conditions, it sends a signal to the reactor control rods to
drop into the core. If the gravity release of the control rods fails, the RPS will actuate the control
rod drive motors to push the control rods into the core. Once the normalize flux drops to 0.27 of its
initial value, the RPS will signal the primary EMPs to trip. The EMP trip is treated as concurrent
to SCRAM for this analysis. The RPS will also isolate operating power heat removal.

2.3 Establishment of Branching Probabilities

The reliability of the RPS was informed by the event tree in Figure 4, from the PRISM Preliminary
Safety Information Document [13].

"I

4'b

RPS SIGNAL ENOUGH PUMP PUMP NOMINAL OPERATING SHUTDOWN Sequence Sequence
REACTIVITY TO RSS FOR CNTRL. RODS TRIP COASTDOWN INHERENT POWER HEAT Clo.. Pr-ob.
INSERTION SHUTDOWN INSERTED REACTIVITY HEAT REMOVAL
CS. 07--. 3B) 8BY RSS FEEDBACK REMOVAL

11Rop RawP o N F;t Rvao

1. ,D 12 3 2 St I.QOOOE a
S3 1.200E-12

P4.35E-9 S 0.E0
IsP 4. 17oE-Z
H3 5. 22DE-21

I-, __O-- St 0.0 -

S5 . 440E-21

0-F1 2. OE-17
019 3.:22E- 1

o ~F3 0. 00-

GIs 3. 49OE--20

14.35E-9 F9 0. 0
2-03-7U 3F3 1. 2a2E- 15

1, • G1s 1.51,4E-27

1 - H2 3. 192E--1:1.~ pig-- 3 lSa 75BE--2

1.0 I .O 0•-- 1 P 0.0O

1. 0 l, .•H2 3. 49GE--17

,P29 4. 17aE-2•9

F"1 0.0

Ong{0•--I5 F3 0. 0
4-O- 1,0-12 FS 0. a

GIs 0.0O

14.-5E--9 FS 0.0D
A- QQ0A -- 20-1 F9 0.0O

SP! 1. 391GE-0

DE4H2 5. SOOE- I •
11.0 -PIS 85 720E-25

44GE4 1.0-2 H2 5. B00E- 1

P2S 8. 720E-311

a-
3

CO

B. I. TREID-05--1997 SYS. R. TREE IEla -ReoctIvIty Inmee. (*. 07-0. 19)

Figure A4.2-1

Figure 4: PRISM RPS Event Tree
These probabilities are summarized in Table 1, where SHR refers to Shutdown Heat Removal and
OHR refers to Operating Power Heat Removal. An event with a bar over its name indicates that
the event has not occurred. For example, the likelihood that SCRAM does not occur when RPS has
actuated is 2.9x10-7. The event tree analysis conducted in this study does not differentiate between
failures that occur because RPS failed or due to other failure modes because the difference is not
seen in the dynamic simulations. Thus, Table 2 shows the probabilities of the four different out-
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comes when the RPS system is commanded to actuate. It should be noted that, unless the initiating
event is loss of heat removal, it is assumed that if scram occurs then operating heat removal will be
unavailable but shutdown heat removal will be available. Furthermore, it is assumed that if scram
does not occur then operating heat removal is available.

Table 1: Conditional Probability for RPS
Event Probability
RPS 1.4x10-9

SCRAM|RPS 2.9x10-7

EMP Trip|RPS 1.2x10-9

OHR Trip|RPS 4x10-4

SHR Trip 1.2x10-12

EMP Trip|RPS 1.0

Frequencies for various initiating events were obtained from the PRISM PSID, and are presented
in Table 3. These are used to build the prior probabilities in the DBN.

Table 2: Overall Probability for RPS
RPS Signal Reached Scram No Scram
Pump Trip 0.9999997 1.4x10-9

No Pump Trip 1.4x10-9 2.9x10-7

Table 3: Initiating Event Probability for PRISM
Initiating Event Probability per Year
Reactivity Insertion $0.07 - $0.18 1x10-4

Reactivity Insertion $0.18 - $0.36 1x10-4

Reactivity Insertion > $0.36 1x10-6

Earthquake 0.3g - 0.375g 1x10-4

Earthquake 0.375g - 0.825g 2x10-5

Earthquake > 0.825g 7x10-7

Vessel Fracture 1x10-13

Local Core Blockage 2x10-6

Reactor Vessel Leakage 1x10-6

Loss of One Primary Pump 1.6x10-1

Loss of Substantial Primary Coolant Flow 5x10-2

Loss of Operating Power Heat Removal 8x10-2

Loss of Shutdown Heat Removal via BOP 8x10-3

Loss of Shutdown Heat Removal via IHTS 1x10-2

IHTS Pump Failure 5x10-2

Station Blackout 3x10-5
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2.3.1 TOP Initiating Event Frequencies

From the PRISM PSID [13], four reactivity insertion values (0, 6, 30, 50 cents) were selected for
analysis. For a point of reference, at Middle of Cycle (MOC) conditions the highest reactivity
rod has 30 cents of reactivity worth and all of the control rods combined have $2.68 of reactivity
worth. The PRISM design incorporated rod stops into the control rod drive design to limit the
distance the control rods could be pulled from the core at a given time. PRISM allowed for 50
cents of reactivity to be available after each rod adjustment. Since the small SFR modeled in this
study initially breeds reactivity for the first 15 years and then burns reactivity for the last 15 years,
rod stops, if included, would be applied in a more complicated procedure than was proposed for
PRISM. For example, reactivity changes more at the beginning and end of the 30 year reactor
cycle, and so requires more operator actions to reposition rod stops. This increased activity leads
to an increased probability of inadvertent reactivity insertion. This activity is at a minimum at
MOC.

It should be noted that power adjustments, and thus opportunities for TOPs, would be much less
frequent at MOC than at other portions of the refueling interval. The purpose of this project is to
provide a probabilistic accident space to support DBN reasoning, not to design a reactivity control
scheme for a notional small SFR, thus the initiating frequencies for the TOPs were simply taken
from the ALMR PRA [12] with this note of the caution. The PRISM PRA TOP probabilities
were nearly identical to the ALMR PRA TOP probabilities, with the lowest TOP bin ($0.11 -
$0.35) assigned an annual probability 10-4 and the second lowest TOP bin ($0.35 - $1.75) also
assigned an annual probability of 10-4. In all, the ALMR frequencies seemed to provide a greater
risk-tradeoff potential for this nominal study. The final TOP probabilities are given in Table 4.

Table 4: TOP Initiating Event Frequencies
TOP Magnitude (cents) Probability per Year
0 1 - (1x10-3+1x10-4+1x10-5)
6 1x10-3

30 1x10-4

50 1x10-5

2.3.2 LOF Initiating Event Frequencies

The modeled small SFR notionally has four Electromagnetic Pumps (EMPs) to provide forced
circulation through the primary circuit. Two stages of partial LOF, in addition to the no LOF and
complete LOF cases, were analyzed in the DBN. It was assumed for this analysis that the DBNs
ability to infer a LOF accident could be achieved with only 0.75 (3 of 4 working EMPs), 0.5 (2 of 4
EMPs functional), and 0 (0 of 4 EMPs functional) flow branch conditions. The annual occurrence
probabilities were derived from the PRISM PSID, with an annual failure rate for two pumps of
0.05. This probability is dominated by loss of an electrical bus which stops forced flow to two
EMPs. Loss of all four EMPs is calculated as the loss of both electrical busses with a common
cause failure factor β of 0.1. When the RPS functions as designed, a trip signal is sent to the
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pumps. Thus, the probability of pump trip is near 1 (i.e., 1 - 1.2x10-9) when the reactor protection
system functions. The remaining probability 1.2x10-9 is divided by 2 for the 100% and 50% flow
branches. In reality, these branches likely represent operator actions, not stochastic failures. If
the reactor protections system fails, the probability of independent pump trip concurrent to the
initiating event is simply Pr(IE)*Pr(X% Flow) under the rare event approximation. The final LOF
probabilities are given in Table 5.

Table 5: LOF Initiating Event Frequencies
Flow % Probability per Year | β
100 1
75 0.16
50 0.05
0 0.0051

2.3.3 LOHR Initiating Event Frequencies

The loss of heat sink initiating event frequency is divided into situations where operating power
heat removal is needed (i.e., events where scram did not occurs) and events where shutdown heat
removal is needed (i.e., events were scram did occur). The PRISM PSID assigns an annual proba-
bility of 0.08 to the failure of the operating power heat removal and 0.182 to loss of shutdown heat
removal through a combination of balance of plant (BOP) and intermediate heat transport system
(IHTS) failure events. It should be noted that DRACS is available in varying degrees in all accident
conditions.

2.4 Seismic-Induced Accident Branches

For earthquake cases, the first branching point was the magnitude of the earthquake. The options
for magnitude were 0.3g and 0.5g. Next, one of twenty-five sets of reactivity coefficients (RCs)
was applied. It was reasoned that the earthquake will induce some level of control rod chatter
proportional to peak ground acceleration, and that the magnitude of reactor power changes will
depend on reactivity coefficients. Figure 5 shows the specific example of 0.3g ground acceleration
and the first set of reactivity coefficients. The next branching point allowed the RPS to scram
the reactor, trip the pumps, both, or neither. There was also a possibility for half of the primary
pumps to fail, with or without scram, and without a trip of the other pumps. Next, the operator
may override a pump trip or lack of trip by restarting or tripping pumps, respectively. If the pumps
are running when they reach the thermal damage point, there is a branch for multiplying torque by
(1.0, 0.5, or 0.0). For example, if half of the pumps failed initially and thermal damage fraction
was 0.5, the reactor is left with 0.25 of nominal pumping torque. Finally, the secondary pump
speed is branched out to 1.0, 0.5, or 1.5 times its nominal speed. The branches are identical for
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0.5g acceleration and the other sets of reactivity coefficients. The numbers on the right side of the
figure are the number of branches for each sub-tree. For example, if SCRAM occurs and the pump
trips, there are 6 ways the scenario can branch: the operator may or may not restart the pumps, and
there are three secondary pump speeds.

The total number of branches is in the upper right corner of Figure 5: 63 in this case. Each
earthquake acceleration sub-tree produced 1,575 branches, as there were 63 branches per set of
reactivity coefficents and 25 sets of reactivity coefficients. A total of 1,800 branches were run,
however, because branches that were considered to have extremely low probabilities were still run.
For example, there were no branches where a SCRAM occurred and the cold pool reached a high
enough temperature for thermal pump damage. This accident scenario was not represented in the
event tree, but was still modeled in SAS4A and used in the DBN. This decision was made for all
accident types and magnitudes, and the number of branches given in the text represents the total
including extremely low probability branches.
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Figure 5: Earthquake (0.3g, RC Set 1): Accident Branching
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2.5 TOP Accident Branches

The first branching point of the TOP accident tree is the presence or absence of heat transfer
from the core to the balance of plant (BOP). The next major branching is the degree of reactivity
insertion. Figure 6 shows the branches for TOP with BOP and 6 cents insertion. The next branching
point is the scram and pump trip combination. If the pumps do trip, there is a branching for the
operator to restart them. If the pumps do not trip, there is a branching for the operator to trip
them. Some cases do not branch further. For example, if the RPS scrams the reactor and does
not trip the pumps, and the operator does not trip the pumps, the reactor is assumed to be in a
safe configuration. Similarly, the pump thermal failure fraction is not branched if the pumps are
tripped. In this case, however, reactor damage may still occur. The branching is identical for 30
and 50 cent insertions. Altogether, TOP with BOP produces 1,512 cases.

The next major branch is TOP without BOP. This leads to substantially fewer branches, as the
secondary pump speed becomes irrelevant. All other branching points are identical to TOP with
BOP. Figure 7 shows the branching for TOP without BOP in the specific case of a 6 cent insertion.
There are 396 cases for TOP without BOP.
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Figure 6: TOP with BOP Present: Accident Branching
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Figure 7: TOP with BOP Absent: Accident Branching

2.6 LOF Accident Branches

The first branching point of the LOF accident tree is the presence or absence of heat transfer from
the core to the BOP. The next major division is the number of pumps failed. Options are one, two,
or four pumps failed out of four total. In cases with one or two pumps failed, branching continues
much as in the TOP cases. See Figure 8 for an example. There are again options for the RPS to
scram, trip the remaining pumps, both, or neither. There is also the option for operator intervention
to either trip or restart the remaining pumps. In the case of thermal failure in a LOF accident, the
failure fraction (1, 0.5, or 0) is applied to the total pumping capability of the remaining pumps.
This is to simulate all pumps experiencing some thermal damage, not necessarily any single pump
failing completely. The branching is identical for 2 failed pumps. If all pumps have failed (Figure 9,
the branching is simplified because there is no ability to trip or restart primary pumps. In this case,
the only further branching point is secondary pump speed. There are 837 cases for LOF with BOP.
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If the BOP is not available in a LOF accident, branching is again considerably simplified. Figure 10
shows the branching for LOF without BOP in the specific case of one pump failure. Scram, trip,
operator action, and thermal failure are all still in play. Secondary pump speed is now irrelevant.
The branching is identical for two failed pumps. Figure 11 shows the branching when all pumps
have failed and BOP is unavailable. The only options are to scram or not scram. There are 279
cases for LOF without BOP.
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Figure 8: LOF (1 Pump Failed) with BOP Present: Accident Branching

2.7 LOHR Accident Branches

The first major branching condition for the loss of operating heat removal (LOHR) accident is the
presence or absence of heat transfer from the core to the balance of plant (BOP). Figure 12 shows
the branches for LOHR with BOP. First, the RPS may scram, trip pumps, both, or neither. Then,
as in other accident scenarios, the pumps may be tripped or restarted by the operator, and may
experience thermal damage. There are 396 cases for LOHR with BOP.

If the BOP is lost, secondary pump speed is irrelevant. Scram, trip, operator action, and thermal
failure are still in play. Figure 13 shows the possible branches for LOHR with no BOP. This
reduces the number of cases to 168.
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Figure 9: LOF (4 Pumps Failed) with BOP Present: Accident Branching
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Figure 10: LOF (1 Pump Failed) with BOP Absent: Accident Branching
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Figure 11: LOF (4 Pumps Failed) with BOP Absent: Accident Branching
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Figure 13: LOHR with BOP Absent: Accident Branching
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3 Processing of SAS4A Results

This section describes the SAS4A data as it is presented to the DBN. The processing involved and
results of important choices are briefly discussed. The data output from the SAS4A runs create
a three dimensional matrix of 7,188 by 2,588 by 14. These dimensions are defined by the 7,188
SAS4A scenarios described in Chapter 2, the 2,588 time steps returned by SAS4A as it ran from
start to finish through the branches, and the 14 SAS4A variables which were selected a priori
to represent either those monitored plant parameters observable in the main control room or those
unmonitored plant parameters which could be inferred by operators. This three dimensional matrix
of SAS4A output was processed by the data translator ALADDIN [11]. The data was sampled
across the time step dimension such that the results of 96 of the 2,588 time steps were retained for
informing the DBN. The data retained (96 values for each of the 14 plant parameters for each of
7,188 branches) are further reduced through by creating bins of time-dependent data for informing
the DBN model. This binning process is discussed below.

3.1 SAS4A Data Binning Process

For this study, an equal-width binning scheme was used with three bins. That is, the range of each
variable is calculated and each bin covers 1/3 of that range. Bin 0 covers the lower 1/3 of the range,
Bin 1 the middle 1/3, and Bin 2 the top 1/3 of the range of any particular variable. This method
is susceptible to the effects of a single outlier, as evidenced by reactor power (Figure 24). In that
case, a single time step of a single scenario reaches 1054 times nominal. This causes each bin to
be very wide, and nearly all data to be placed in Bin 0. It is unlikely that the particular time step
would be used by the DBN, and so the most likely condition is that every DBN node for Power
will be in Bin 0. This renders the variable useless for making inferences, as it never changes. This
also affected the binning of peak fuel temperature (Figure 18), cold pool level (Figure 23), and
power to flow ratio (Figure 26). For future analyses, different binning strategies will be explored.
For example, each bin may be set to a desired percentage of the range.

3.2 Binned SAS4A Data

Figures 14 through 27 illustrate the results of the ALADDIN binning for each of the 14 plant
parameters selected for the DBN. Figures 14, 15, 16, and 17 show binning of the reactivity contri-
butions of various types of feedback, all of which had coefficients that were varied at the start of the
scenarios. Note that these figures represent the bin populations of parameters with each scenario
given equal weight, and do not reflect the overall likelihood of parameters being in specific bins on
a ”typical day”. For example, the figures do not account for the reliability of the SCRAM system.
It can be seen that the major changes in reactivity contribution came from axial and radial expan-
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Figure 14: Axial Expansion Feedback
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Figure 15: Radial Expansion Feedback
Bins
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Figure 16: Coolant Feedback Bins
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Figure 17: Doppler Feedback Bins

sion of the fuel. Figures 18 and 19 show binning of temperatures of fuel and coolant within the
hottest core channel. Coolant temperature can be seen to rise in most scenarios with time. Figure
20 shows binning of cladding thickness, which can drop to Bin 0 suddenly as fuel pins rupture late
in the accident.

It is seen in Figure 21 that coolant flow tends to decrease with time, which is to be expected as
pumps are tripped or fail. Coolant flow is a physical state monitored by plant instrumentation that
the operator can use as evidence to hypothesize the accident condition and make a decision to
act. Cold pool temperature (Figure 22), cold pool level (Figure 23), power (Figure 24), and cover
gas pressure (Figure 27) are also monitored, and the power-to-flow ratio (Figure 26) is calculated
from power and flow. Total reactivity (Figure 25) is derived from changes in power, and so can be
considered a known variable to the operator.
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Figure 18: Peak Fuel Temperature
Bins
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Figure 19: Channel Coolant Tempera-
ture Bins
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Figure 20: Cladding Thickness Bins
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Figure 21: Channel Coolant Flow Bins
(Instrumented)
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Figure 22: Cold Pool Temperature Bins
(Instrumented)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
. 

o
f 

B
in

 2

0 10 20 30 40 50 60 70 8090
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
. 

o
f 

B
in

 1

10-1 100 101 102 103 104 105 106

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
. 

o
f 

B
in

 0

Figure 23: Cold Pool Level Bins (In-
strumented)
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Figure 24: Reactor Power Bins (Instru-
mented)
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Figure 25: Total Reactivity Bins (In-
strumented)
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Figure 26: Power-to-Flow Ratio Bins
(Instrumented)
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Figure 27: Cover Gas Pressure Bins
(Instrumented)
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3.3 DBN Target Node Values

The DBN target node states (differential pump pressure, balance of plant status, DRACS status
and SCRAM status) were calculated from the SAS4A input and output data. Differential pressure
states were determined by the pump pressure at the end of each simulation. The pressure would
indicate whether 0, 1, 2, or all 4 pumps were still operating. Figure 28 shows the percentage of
scenarios that end in each of the states under consideration. It can be seen that the great majority of
cases end with all pumps lost or tripped. It should be noted that while the LOF accidents branched
on 0, 1, 2, or all 4 pumps failed, the differential pressure target node represents 0, 1, 2, or all 4
pumps functioning at the end of the accident scenario. It was chosen to define the target node more
finely at higher levels of pump outage (by failure or tripping), as fuel damage is generally more
likely with more pumps failed. In this way, the relationship between higher levels of pump outage
and fuel damage may be seen more clearly.

Next, BOP status is shown in Figure 29. The percentage associated with the Decay state indicates
that there is zero or nearly zero heat transfer to the balance of plant in nearly 2/3 of cases. This is
a parameter that is set in a priori in the event tree for each scenario. In a DDET the BOP status
would be dynamic, dropping when a scram occurs or upon some other criteria for disconnection
or damage of the IHTS.

The status of DRACS was also set a priori in this set of scenarios (Figure 30), but can be made
dynamic. The operator may attempt to increase heat transfer by dumping water into the DRACS
system. If the temperature is high enough, this may actually cause the heat transfer to be reduced
as the system may be damaged by thermal shock.

Finally, the scram status (Figure 31) was determined from both the SAS4A input and output ac-
cording to the following rules:

• If TOP and scram disabled→ Control rods withdrawn

• If TOP and scram enabled→ Control rods fully inserted

• If no TOP and scram disabled→ Control rods nominal

• If no TOP and scram enabled→ . . .

– If final reactivity <-$10→ Control rods fully inserted

– Otherwise→ Control rods nominal
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4 DBN Model

4.1 Model Structure

This chapter describes the structure of the DBN under study as well as the prior assumptions
included within it, while Chapter 5 contains attempts to diagnose accident and plant parameters
from the DBN with data loaded. Figure 32 contains the structure of the DBN generated for the
case study. This figure contains a plate-based DBN modeling the relationship between reactor
systems and components (denoted by gray nodes), one unmonitored physical state (denoted by
blue nodes), plant parameters (denoted by green nodes), and accident types (denoted by yellow
nodes). In this version only two accident types are recognized: TOP and LOF. LOHR will be
added as an accident type in future versions. As such, in Chapter 5 only TOP and LOF accident
are diagnosed. The same model populated with data is shown as Figure 33 with EM Pump 1 set
as ”operational”. Given only this evidence (piece of data) the model reasons that there is a 99%
chance that a TOP is not occurring. This largely reflects the prior probabilities of various plant
states, and diverges as evidence is set that contradicts those probabilities.

Figure 32: DBN Model Structure

The model in Figure 32 contains two accident states, TOP (transient overpower) and LOF (loss
of flow). The model contains seven reactor systems and components (the DRACS, the BOP, four
EMPs, and the scram system) and one unmonitored physical state (Differential Pressure, which is
produced by operational EMPs). The model also contains fourteen plant parameters which may
provide insight into the status of the reactor systems and the accident states. These plant parameters
and their ranges from the SAS4A data are shown in Table 6. It should be noted that these values
have not been edited. For example: pure sodium freezes at 370K, but SAS4A does not model
the freezing phenomena of sodium, only of previously-molten fuel. SAS4A will therefore allow
sodium to flow at temperatures significantly lower than 370K, which may not be valid.

The model structure shows that the four EMPs directly influence the amount of differential pres-
sure; we assume each pump has the same influence on the differential pressure. The time-varying
reactor parameters are duplicated once for each time step, which were distributed as follows:
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Figure 33: Unrolled DBN Structure

• 24 time steps for the first 0.1hr

• 24 time steps from 0.1hr to 1hr

• 24 time steps from 1hr to 10hr

• 24 time steps after 10hr

DRACS availability, scram status, BOP status, and pump differential pressure each influence the
state of all fourteen (including five monitored) plant parameters at each time step in the model.
In this example model, the status of the DRACS, BOP, scram system, and EMPs remain constant
throughout the duration of the accident (i.e., they are modeled in the DBN to either have failed or
remain operational a priori, they do not fail during the accident). The scram system influences the
state of the TOP node; this represents the definitional relationship wherein an unprotected TOP is
defined by failure of the scram system. Similarly the differential pressure influences LOF via a
direct definitional relationship since a LOF accident is defined by loss of differential pressure.

4.2 DBN Node Probability Tables

4.2.1 Accident Type Nodes

The conditional probability table for the LOF node in the DBN is shown in Table 7. Since the LOF
accident is defined by a loss of differential pressure, the conditional probability table for LOF is
deterministic; meaning the state of LOF is completely determined by the state of differential pres-
sure. If there is 0% of the required differential pressure, a Total LOF has occurred. If there is 25%
or 50% of the required differential pressure, a Partial LOF has occurred. If there is approximately
100% of the required differential pressure, there is no LOF.
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Table 6: Plant Parameter Nodes and Bins from ALADDIN, 96 Time Steps.
Node ID Meaning Minimum Bin 0 Max Bin 2 Min Maximum
axialExp Axial Expansion

Reactivity Feedback
($)

-0.62 -0.34 -0.07 0.22

coldpoolT Cold Pool Temperature
(K)

48.99 438.89 828.79 1230.5

coldpoolL Cold Pool Level (m) 5.68 3.3x104 6.6x104 1x105

coolantFeed Coolant Reactivity
Feedback ($)

-0.28 0.54 1.37 2.23

D5clad TH Cladding Thickness in
Channel 5 (Fraction of
nominal)

0.0 0.34 0.66 1.0

doppler Doppler Feedback
Reactivity ($)

-0.29 0.21 0.71 1.23

flow ch5 Channel 5 Flow Rate
(kg/s)

-96.47 -40.92 14.63 71.86

P Gas Cover Gas Pressure
(Pa)

1.4x104 7.4x105 1.5x106 2.2x106

Power Reactor Power Level
(Fraction of nominal)

0.00 5.0x1053 9.9x1053 1.5x1054

powertoflow Power to Flow Ratio
(Fraction of nominal)

-2.3x105 2.3x1055 4.6x1055 7.0x1055

radialExp Radial Expansion
Reactivity Feedback
($)

-0.62 -0.22 0.18 0.60

Reactivity Net Reactivity ($) -24.60 -16.04 -7.47 1.35
T Coolant Peak Coolant

Temperature in
Channel 5 (K)

64.66 571.56 1078.45 1600.7

T Fuel Peak Fuel Temperature
in Channel 5 (K)

65.75 5708.17 1.1x104 1.7x104

The conditional probability table for the TOP node is shown in Table 8. Since there is minimal
available data on the reliability of SFR systems, the probability of transient overpower was assigned
directly by the analysis team.

Table 7: Conditional Probabilities for LOF, given Differential Pressure
Diff. Pres. x 0pct x 25pct x 50pct x 100pct
Total 1 0 0 0
Partial 0 1 1 0
No LOF 0 0 0 1

45



Table 8: Conditional Probabilities for TOP, given Scram State
Scram CRs fully in CRs nominal CRs withdrawn

Unprotected 0 9.59x10-14 2.9x10-7

Protected 1 3.31x10-7 0.9999997
None 0 0.9999997 0

4.2.2 Reactor Systems and Physical State Nodes

The marginal probability tables for the reactor systems (DRACS, EMPs, BOP, and the scram sys-
tem) are shown in Table 9. Since there is no available data on the reliability of SFR systems, these
values were directly assigned by the analysis team. The team will update these values if additional
SFR reliability data becomes available.

The conditional probabilities for differential pressure are derived directly from the causal relation-
ships between flow from the EMPs and differential pressure. The conditional probabilities for
differential pressure are shown in Tables 10 and 11. The probabilities have been assigned based
on expert judgment about the likely state of differential pressure given the status of the pumps.
With all four pumps working, the differential pressure is expected to be 1.0. With one of four
pumps in the failed state, the differential pressure is likely to be around 0.5. With three pumps
failed, the differential pressure is likely to be at 0.25 of what is necessary. If all four pumps are
failed, the DP is highly likely to be 0% of the necessary flow. These most likely states are thus
assigned high probabilities. To accommodate the possibility that un-modeled factors could impact
the relationship between EMPs and differential pressure, smaller probabilities have been assigned
to other states that are possible.

Table 9: Marginal Probabilities for DRACS, the four EM Pumps, Scram, and BOP.
State Probability

DRACS
Enhanced 1.19x10-12

Available 0.999999999998
Unavailable 3.97x10-13

EM Pumps
Operational 0.9996
Failed 4.38x10-4

Scram
CRs fully in 0.0150
CRs nominal 0.985
CRs withdrawn 3.04x10-6

BOP

Operational 0.985
Shutdown 0.0150
Decay 7.95x10-12
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Table 10: Conditional Probabilities for the Differential Pressure Node, given EM Pump State.
EMP 1 Operational
EMP 2 Operational Failed
EMP 3 Operational Failed Operational Failed
EMP 4 Op. Fail Op. Fail Op. Fail Op. Fail
x 0pct 0 0 0 0 0 0 0 0.05
x 25pct 0 0 0 0.05 0 0.05 0.05 0.9
x 50pct 0.0001 0.99 0.99 0.25 0.99 0.25 0.25 0.05
x 100pct 0.9999 0.01 0.01 0.7 0.01 0.7 0.7 0

Table 11: Conditional Probabilities for the Differential Pressure Node, given EM Pump State
(Continued).

EMP 1 Failed
EMP 2 Operational Failed
EMP 3 Operational Failed Operational Failed
EMP 4 Op. Fail Op. Fail Op. Fail Op. Fail
x 0pct 0 0 0 0.05 0 0.05 0.05 0.9999
x 25pct 0 0.05 0.05 0.9 0.05 0.9 0.9 0.0001
x 50pct 0.99 0.25 0.25 0.05 0.25 0.05 0.05 0
x 100pct 0.01 0.7 0.7 0 0.7 0 0 0
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5 Completed DBN Model Analysis

The methodology, as described in Chapters 2 through 4, results in the development of a DBN which
has been informed from the results of 7,188 SAS4A accident simulations. This DBN (based on
96 time steps from the DDET) was exercised against simulated accident conditions (or evidence)
to test its effectiveness for operators to infer which accident situation is likely taking place in the
reactor (see Figure 34). The data points for each parameter at each time step are referred to in the
DBN as pieces of evidence. This evidence may reinforce or contradict the prior probabilities. Ini-
tially, before any evidence is considered, the model reflects only the prior probabilities of various
accidents and plant conditions. It is anticipated that in future research the DBN will be enhanced so
that it will be dynamically tested by receiving real-time evidence from a SAS4A accident simula-
tion as that simulation progresses through time. At this point in time, accident evidence is statically
imposed upon the DBN by setting the values of specific target variables in the DBN (e.g., SCRAM
status, BOP status, DRACS status) to simulate hypothetical outputs of a SAS4A simulation. Some
simple inferences are made to show potential uses of the DBN.

Figure 34: Populated DBN (96 Time Steps)

5.1 DBN Inference Directly from Target Node

First, a target node that is directly related to an accident will be exercised. The Scram target
evidence is set to control rods fully in, which can happen in any accident scenario where power
or temperature exceed certain set points and the RPS system inserts the control rods. The most
common scram is for overpower.

When this evidence of control rod configuration is added, it has the effect (Figure 35) of setting all
Power nodes to Bin 0, even before scram would have occurred. A consequence of n-ary binning
with equal width bins is that a single outlier may greatly influence bin assignment. In this case,
during one time step of one SAS4A scenario the power reached 1054 times nominal. This is
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considered to be an effect of a particular combination of reactivity coefficients and insertion which
is highly unlikely and the numerical methods used in SAS4A. Another binning method is to allow
the user to choose the fraction of the range for each bin, which can reduce the influence of an
outlier if it is recognized. In this case every time step sampled for the DBN has power in Bin 0
(see Figure 24), and so setting evidence of Power in a higher bin would ”lock out” all accident
scenarios at a probability of zero.

Peak fuel temperature (Figure 18) and power-to-flow ratio (Figure 26) are all set to Bin 0 as well,
because of the outlier power spike. In all, 5 of 14 plant parameters are rendered useless for in-
ferencing with this particular set of binned scenario data. Early reactivity nodes are set to Bin 2,
which is expected for a case which would lead to a scram. The new probability of a protected
TOP is 1. Other accident scenarios that end in scram have much smaller prior probabilities than
protected TOP, and so it appears as the most likely accident.

5.2 DBN Inference Directly from Data

Next, an attempt will be made to deduce an accident scenario from a smaller set of evidence. In a
LOF accident, it would be expected that coolant flow will be low and channel coolant temperatures
will be high early in the accident. If channel coolant temperature evidence from approximately
minutes 1 through 5 is set to Bin 2, and channel flow for the same time steps is set to Bin 1 (the
lowest bin with a population), the model believes (Figure 36) that a protected TOP has happened
with 1.000 probability. This is because protected TOP has a much higher prior probability and in
most protected TOP scenarios the pumps also trip, reducing flow and increasing channel tempera-
ture.

In order to force the model to diagnose a loss of flow accident, evidence must be added to distin-
guish the plant state from that of a protected TOP. With a loss of flow, the cold pool temperature
will likely stay low longer into the accident. This is because decay heat will not transfer as quickly
from the core channels, and auxiliary heat removal systems will continue to cool the pool directly.
With two later nodes of the cold pool temperatures set to Bin 0 the model is now certain (Figure
37) that a protected TOP and total LOF are both happening.

At this point the most useful piece of additional evidence would be channel coolant temperature
later into the accident. With two later channel coolant temperature nodes set to Bin 2, there is
no change in the diagnosis (Figure 38). Because the two accident conditions are not mutually
exclusive and in fact often occur in tandem, this is seen as acceptable inferencing from the DBN.
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Figure 35: DBN Diagnosis, CRs Fully In

Figure 36: DBN Diagnosis, Low Flow and High Channel Coolant Temperature
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Figure 37: DBN Diagnosis, Additional Low Cold Pool Temperature

Figure 38: DBN Diagnosis, Additional Channel Coolant Temperature
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5.3 DBN Time Step Effects

In order to test the effect of the number of time steps chosen for the ALADDIN data processing
(as discussed in Chapter 3), the model with 96 time steps was compared to models with 190,
268, and 373 time steps. It is important to remember that for each different time step scheme
different samples may be used from the overall set of accident data, which may affect binning. In
all cases, flow and cold pool temperature are set to Bin 1 for time between 150,000s and the end
of the simulation. This represents a loss of flow scenario with or without TOP. This spans 4 time
steps in the model with 96 time steps and 16 in the model with 373, or approximately 4% of all
evidence for each variable in both models. In the case of 96 time steps (Figure 39), the model
believes with 0.987 probability that a protected TOP is occurring. The model recognizes channel
coolant temperature later in the accident as the next most useful piece of evidence for updating the
diagnosis.

With 190 time steps, the model infers the prior probabilities (Figure 40) and no additional piece
of evidence is particularly useful for determining a diagnosis. With 268 time steps, the model
believes (Figure 41) with a 0.021 probability that a protected TOP is occurring. This is just above
the prior probability of 0.015. It recognizes various reactivities as the next most influential pieces
of evidence. With 373 time steps, the model believes (Figure 42) with 1.000 probability that both a
total LOF and protected TOP are occurring. It recognizes various reactivities as the most influential
next pieces of evidence in changing its diagnosis. These discontinuities in results suggest that there
is sensitivity to the discretization of the data which must be investigated further.
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Figure 39: DBN Diagnosis, 96 Time Steps

Figure 40: DBN Diagnosis, 190 Time Steps
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Figure 41: DBN Diagnosis, 268 Time Steps

Figure 42: DBN Diagnosis, 373 Time Steps
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6 Additional DBN Model Analysis

Future research will focus on validation of the proof-of-concept models through two activities.
First, we will validate the predictions of the model against a test set of data generated from addi-
tional ADAPT-SAS4A simulations of the accident scenarios. We will use the test data to quantify
the diagnostic accuracy of the DBNs and to identify the DBNs with highest performance. Secondly,
we will attempt to compare the highest-performing DBNs against existing emergency procedures
and operator expectations for the two accident scenarios (TOP and LOF) to

• Verify that the DBN can correctly diagnose the accidents based on the plant conditions in
the procedures

• Verify that the level of detail in the DBN matches operator expectations

The results of this modeling and validation activity will provide the necessary foundation for an
integrated probabilistic-deterministic framework for nuclear risk assessment, and will set the foun-
dation for application of that framework to change the state of the art in accident modeling in
nuclear power and beyond.

Additional nodes in the DBN that may increase the utility of the model have been identified. The
first is a target node that reflects the state of the fuel, in order to identify which pieces of evidence
suggest an accident sequence that will lead to fuel damage. It is expected that this target would
follow cladding thickness closely, similarly to how differential pressure follows flow. An additional
accident type node may be added for loss of operating heat removal (LOHR), which would be
closely related to the states of targets BOP and DRACS. Both of these changes, in addition to
experimentation with more refined binning processes, will lead to a more powerful diagnosis tool.

To provide insight into which plant parameters are most important, the authors will expand the
use of Kullback-Leibler (KL) divergence [14]. Formally, KL divergence measures the distance
between two probability distributions (e.g., between two DBN models). In probability theory, KL
divergence is used to measure the amount of information lost when Q is used to approximate P.
In a general probability application, P could be defined as the true distribution of a variable and
Q could be defined as a theoretical model of the data. For application to the current problem,
KL divergence is used to compare the base DBN model with a DBN with one plant parameter
removed. Essentially, the KL divergence calculates the information lost when an arc is removed
from the model [15].

∑
i∈p

P(i)log
(

P(i)
Q(i)

)
(1)

57



In calculating the KL divergence of an arc in the DBN, P(i) is the model with the arc being
measured while Q(i) is the model without the arc being measured. The values summed over i
are combinations of possible observed and target states. KL divergence is calculated for each
arc between the observation and target nodes in a method similar to that found in [16]. Joint
KL divergence calculations are conducted over all the target nodes for each observation node. In
calculating the joint KL divergence, we treated each combination of possible target node states as
a single state in a joint target node that collected all targets into a single node.
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7 Conclusion

In this report a notional small sodium-cooled fast reactor system was presented with a set of acci-
dents, including earthquake-induced transient overpower, control rod removal transient overpower,
loss of primary coolant flow, and loss of operating and shutdown heat removal. The reactor’s re-
sponse to 7,188 unique accident scenarios was examined, and then processed for inclusion in a
Dynamic Bayesian Network for the purpose of diagnosing an accident by the state of various reac-
tor parameters. Particular emphasis is paid to those parameters which are monitored and displayed
in the control room, as these are the information that would be available to operators in the event of
such accidents. As the procedure reaches a higher level of refinement, it can be used for a variety
of purposes:

• Inform SAMGs and accident response in general,

• Assess the challenges of accident diagnosis to examine the acceptability of reduced staffing
levels,

• Inform operator training as an exploration tool, demonstrating the relationships between
accident conditions and plant parameters

• Inform instrument design by identifying those monitored plant parameters that are essential
for proper diagnosis of specific accidents

Previous reports on SMART SAMG development have focused on accident management insights
for the sodium fast reactor. While accident management is still the overriding goal for the SNL
component of DOE’s advanced reactor PRA initiative, it was apparent to the authors that the diag-
nostic capability of the DBN must mature further before significant accident management insights
could be gained. Thus, SNL efforts in FY15 were focused on developing the ALADDIN data
translator which allows for rapid prototyping of accident diagnostic DBNs. Using the ALADDIN
data translator to expertly determine the selection of the diagnostic binning values, along with
rapid iteration of the DBN structure, should dramatically increase the diagnostic capabilities of the
DBN.

The DBN approach for post-processing accident data presented in this report demonstrated limited
diagnostic capabilities due to the initial n-ary discretization. The three bins produced by the n-
ary discretization procedure for this analysis produced certain conditional probabilities that were
consolidated in one bin and did not vary with accident time. Even with these limitations, inferences
were still achievable, including the diagnosis of:

• Protected transient overpower inferred from early hot core outlet temperature and low flow
indications and

• Loss of flow inferred through further incorporation of low inlet coolant temperatures further
into the accident.
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One open question that remains from the current analysis relates to the ability of the DBN to di-
agnose unprotected accidents. Namely: how much contrary evidence is needed before the DBN
is able to overcome the low probability prior probability associated with unprotected events? Be-
cause many of the interesting accident management decisions for sodium reactors exist in the be-
yond design basis unprotected accident regime, this question must be answered before the ultimate
usefulness of the DBN SMART SAMG methodology is truly realized.
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